Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels

Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels
1.

Holzmeister, P., Acuna, G. P., Grohmann, D. & Tinnefeld, P. Breaking the concentration limit of optical single-molecule detection. Chem. Soc. Rev. 43, 1014–1028 (2014).


2.

Punj, D. et al. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 268–282 (2014).

3.

Fabrizio, E. D. et al. Roadmap on biosensing and photonics with advanced nano-optical methods. J. Opt. 18, 063003 (2016).

4.

Levene, M. J. et al. Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations. Science 299, 682–686 (2003).

5.

Zhu, P. & Craighead, H. G. Zero-Mode Waveguides for Single-Molecule Analysis. Annu. Rev. Biophys. 41, 269–293 (2012).

6.

Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010).

7.

Rigneault, H. et al. Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures. Phys. Rev. Lett. 95, 117401 (2005).

8.

Wenger, J. et al. Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. Opt. Express 16, 3008–3020 (2008).

9.

Jiao, X., Peterson, E. M., Harris, J. M. & Blair, S. UV Fluorescence Lifetime Modification by Aluminum Nanoapertures. ACS Photonics 1, 1270–1277 (2014).

10.

Pibiri, E., Holzmeister, P., Lalkens, B., Acuna, G. P. & Tinnefeld, P. Single-Molecule Positioning in Zeromode Waveguides by DNA Origami Nanoadapters. Nano Lett. 14, 3499–3503 (2014).

11.

Zhao, C., Liu, Y., Yang, J. & Zhang, J. Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna. Nanoscale 6, 9103–9109 (2014).

12.

Alam, M. S., Karim, F. & Zhao, C. Single-molecule detection at high concentrations with optical aperture nanoantennas. Nanoscale 8, 9480–9487 (2016).

13.

Martin, W. E., Srijanto, B. R., Collier, C. P., Vosch, T. & Richards, C. I. A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides. J. Phys. Chem. A 120, 6719–6727 (2016).

14.

Ponzellini, P. et al. Plasmonic zero mode waveguide for highly confined and enhanced fluorescence emission. Nanoscale 10, 17362–17369 (2018).

15.

Wu, M. et al. Fluorescence enhancement in an over-etched gold zero-mode waveguide. Opt. Express 27, 19002–19018 (2019).

16.

Barulin, A., Claude, J.-B., Patra, S., Bonod, N. & Wenger, J. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides. Nano Lett., https://doi.org/10.1021/acs.nanolett.9b03137SMASH (2019).

17.

Eid, J. et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133–138 (2009).

18.

Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).

19.

Larkin, J., Henley, R. Y., Jadhav, V., Korlach, J. & Wanunu, M. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat. Nanotechnol. 12, 1169–1175 (2017).

20.

Zhao, Y. et al. Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions. Nano Lett. 14, 1952–1960 (2014).

21.

Wenger, J. et al. Nanoaperture-Enhanced Signal-to-Noise Ratio in Fluorescence Correlation Spectroscopy. Anal. Chem. 81, 834–839 (2009).

22.

Goldschen‐Ohm, M. P., White, D. S., Klenchin, V. A., Chanda, B. & Goldsmith, R. H. Observing Single-Molecule Dynamics at Millimolar Concentrations. Angew. Chem. 129, 2439–2442 (2017).



23.

Samiee, K. T., Foquet, M., Guo, L., Cox, E. C. & Craighead, H. G. λ-Repressor Oligomerization Kinetics at High Concentrations Using Fluorescence Correlation Spectroscopy in Zero-Mode Waveguides. Biophys. J. 88, 2145–2153 (2005).

24.

Miyake, T. et al. Real-Time Imaging of Single-Molecule Fluorescence with a Zero-Mode Waveguide for the Analysis of Protein−Protein Interaction. Anal. Chem. 80, 6018–6022 (2008).

25.

Sandén, T. et al. A Zeptoliter Volume Meter for Analysis of Single Protein Molecules. Nano Lett. 12, 370–375 (2012).

26.

Chen, J. et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc. Natl. Acad. Sci. 111, 664–669 (2014).

27.

Barik, A. et al. Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays. Nano Lett. 14, 2006–2012 (2014).

28.

Dahlin, A. B. Sensing applications based on plasmonic nanopores: The hole story. Analyst 140, 4748–4759 (2015).

29.

Auger, T. et al. Zero-Mode Waveguide Detection of Flow-Driven DNA Translocation through Nanopores. Phys. Rev. Lett. 113, 028302 (2014).

30.

Assad, O. N. et al. Light-Enhancing Plasmonic-Nanopore Biosensor for Superior Single-Molecule Detection. Adv. Mater. 29, 1605442 (2017).

31.

Jadhav, V., Hoogerheide, D. P., Korlach, J. & Wanunu, M. Porous Zero-Mode Waveguides for Picogram-Level DNA Capture. Nano Lett. 19, 921–929 (2019).

32.

Verschueren, D. V. et al. Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores. ACS Nano 13, 61–70 (2019).

33.

Ghenuche, P., de Torres, J., Moparthi, S. B., Grigoriev, V. & Wenger, J. Nanophotonic Enhancement of the Förster Resonance Energy-Transfer Rate with Single Nanoapertures. Nano Lett. 14, 4707–4714 (2014).

34.

Torres, J., de, Ghenuche, P., Moparthi, S. B., Grigoriev, V. & Wenger, J. FRET Enhancement in Aluminum Zero-Mode Waveguides. ChemPhysChem 16, 782–788 (2015).

35.

Baibakov, M. et al. Extending Single-Molecule Förster Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides. ACS Nano 13, 8469–8480 (2019).

36.

Samiee, K. T., Moran-Mirabal, J. M., Cheung, Y. K. & Craighead, H. G. Zero Mode Waveguides for Single-Molecule Spectroscopy on Lipid Membranes. Biophys. J. 90, 3288–3299 (2006).

37.

Wenger, J. et al. Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization. Biophys. J. 92, 913–919 (2007).

38.

Kelly, C. V., Baird, B. A. & Craighead, H. G. An Array of Planar Apertures for Near-Field Fluorescence Correlation Spectroscopy. Biophys. J. 100, L34–L36 (2011).

39.

Kelly, C. V., Wakefield, D. L., Holowka, D. A., Craighead, H. G. & Baird, B. A. Near-Field Fluorescence Cross-Correlation Spectroscopy on Planar Membranes. ACS Nano 8, 7392–7404 (2014).

40.

Richards, C. I. et al. Live-Cell Imaging of Single Receptor Composition Using Zero-Mode Waveguide Nanostructures. Nano Lett. 12, 3690–3694 (2012).

41.

Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 5, 915–919 (2009).

42.

Pang, Y. & Gordon, R. Optical Trapping of 12 nm Dielectric Spheres Using Double-Nanoholes in a Gold Film. Nano Lett. 11, 3763–3767 (2011).

43.

Xu, Z., Song, W. & Crozier, K. B. Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture. ACS Photonics 5, 2850–2859 (2018).

44.

Jiang, Q., Rogez, B., Claude, J.-B., Baffou, G. & Wenger, J. Temperature Measurement in Plasmonic Nanoapertures Used for Optical Trapping. ACS Photonics 6, 1763–1773 (2019).

45.

Seed, B. Silanizing Glassware. Curr. Protoc. Cell Biol. 8, A.3E.1–A.3E.2 (2000).



46.

Ashurst, W. R., Yau, C., Carraro, C., Maboudian, R. & Dugger, M. T. Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlorosilane self-assembled monolayer. J. Microelectromechanical Syst. 10, 41–49 (2001).

47.

Chang, I.-N., Lin, J.-N., Andrade, J. D. & Herron, J. N. Adsorption Mechanism of Acid Pretreated Antibodies on Dichlorodimethylsilane-Treated Silica Surfaces. J. Colloid Interface Sci. 174, 10–23 (1995).

48.

Hua, B. et al. An improved surface passivation method for single-molecule studies. Nat. Methods 11, 1233–1236 (2014).

49.

Zanetti-Domingues, L. C., Martin-Fernandez, M. L., Needham, S. R., Rolfe, D. J. & Clarke, D. T. A Systematic Investigation of Differential Effects of Cell Culture Substrates on the Extent of Artifacts in Single-Molecule Tracking. Plos One 7, e45655 (2012).

50.

Cai, H. & Wind, S. J. Improved Glass Surface Passivation for Single-Molecule Nanoarrays. Langmuir 32, 10034–10041 (2016).

51.

Park, J. H. et al. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking. Phys. Chem. Chem. Phys. 19, 8854–8865 (2017).

52.

Szkop, M., Kliszcz, B. & Kasprzak, A. A. A simple and reproducible protocol of glass surface silanization for TIRF microscopy imaging. Anal. Biochem. 549, 119–123 (2018).

53.

Korlach, J. et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl. Acad. Sci. 105, 1176–1181 (2008).

54.

Kinz-Thompson, C. D. et al. Robustly Passivated, Gold Nanoaperture Arrays for Single-Molecule Fluorescence Microscopy. ACS Nano 7, 8158–8166 (2013).

55.

Vargel, C. Corrosion of Aluminium. (Elsevier Science, 2004).

56.

Xhanari, K. & Finšgar, M. Organic corrosion inhibitors for aluminium and its alloys in acid solutions: a review. RSC Adv. 6, 62833–62857 (2016).

57.

Zhang, F., Martin, J. & Plain, J. Long-term stability of plasmonic resonances sustained by evaporated aluminum nanostructures. Opt. Mater. Express 9, 85–94 (2019).

58.

Lee, M. et al. Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting. ACS Nano 9, 6206–6213 (2015).

59.

Renard, D. et al. Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. ACS Nano 13, 3117–3124 (2019).

60.

Barulin, A. et al. Preventing Aluminum Photocorrosion for Ultraviolet Plasmonics. J. Phys. Chem. Lett. 5700–5707, https://doi.org/10.1021/acs.jpclett.9b02137SMASH (2019).

61.

Kudryashov, D. S., Phillips, M. & Reisler, E. Formation and Destabilization of Actin Filaments with Tetramethylrhodamine-Modified Actin. Biophys. J. 87, 1136–1145 (2004).

62.

Cabantous, S., Terwilliger, T. C. & Waldo, G. S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23, 102 (2005).

63.

Zanetti-Domingues, L. C., Tynan, C. J., Rolfe, D. J., Clarke, D. T. & Martin-Fernandez, M. Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding. Plos One 8, e74200 (2013).

64.

Hughes, L. D., Rawle, R. J. & Boxer, S. G. Choose Your Label Wisely: Water-Soluble Fluorophores Often Interact with Lipid Bilayers. Plos One 9, e87649 (2014).

65.

Widengren, J. & Mets, Ü. Conceptual Basis of Fluorescence Correlation Spectroscopy and Related Techniques as Tools in Bioscience. In Single Molecule Detection in Solution 69–120 (John Wiley & Sons, Ltd), https://doi.org/10.1002/3527600809.ch3SMASH (2003).