Polymerization of silanes through dehydrogenative Si–Si bond formation on metal surfaces

Polymerization of silanes through dehydrogenative Si–Si bond formation on metal surfaces
1.

West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214, 1343–1344 (1981).

CAS  PubMed  Article  Google Scholar 

2.

Masamune, S., Murakami, S., Snow, J. T., Tobita, H. & Williams, D. J. Molecular structure of tetrakis(2,6-diethylphenyl)disilene. Organometallics 3, 333–334 (1984).

CAS  Article  Google Scholar 

3.

Kira, M., Maruyama, T., Kabuto, C., Ebata, K. & Sakurai, H. Stable tetrakis(trialkylsilyl)disilenes; synthesis, X-ray structures, and UV/VIS spectra. Angew. Chem. Int. Ed. 33, 1489–1491 (1994).

Article  Google Scholar 

4.

Tokitoh, N., Suzuki, H., Okazaki, R. & Ogawa, K. Synthesis, structure, and reactivity of extremely hindered disilenes: the first example of thermal dissociation of a disilene into a silylene. J. Am. Chem. Soc. 115, 10428–10429 (1993).

CAS  Article  Google Scholar 

5.

Weidenbruch, M. Silylenes and disilenes: examples of low coordinated silicon compounds. Coord. Chem. Rev. 130, 275–300 (1994).

CAS  Article  Google Scholar 

6.

Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).

CAS  PubMed  Article  Google Scholar 

7.

Gille, M., Grill, L. & Hecht, S. Bottom-up zu molekularen nanostrukturen. Nachr. Chem. 60, 986–990 (2012).

CAS  Article  Google Scholar 

8.

Held, P. A., Fuchs, H. & Studer, A. Covalent-bond formation via on-surface chemistry. Chem. Eur. J. 23, 5874–5892 (2017).

CAS  PubMed  Article  Google Scholar 

9.

Wang, T. & Zhu, J. Confined on-surface organic synthesis: strategies and mechanisms. Surf. Sci. Rep. 74, 97–140 (2019).

CAS  Article  Google Scholar 

10.

Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

11.

Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

CAS  PubMed  Article  Google Scholar 

12.

Pigot, M. & Dumur, F. Molecular engineering in 2D surface covalent organic frameworks: towards next generation of molecular tectons - a mini review. Synth. Met. 260, 116265 (2020).

CAS  Article  Google Scholar 

13.

Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

CAS  PubMed  Article  Google Scholar 

14.

Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

CAS  PubMed  Article  Google Scholar 

15.

Shekhirev, M., Zahl, P. & Sinitskii, A. Phenyl functionalization of atomically precise graphene nanoribbons for engineering interribbon interactions and graphene nanopores. ACS Nano 12, 8662–8669 (2018).

CAS  PubMed  Article  Google Scholar 

16.

Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

CAS  PubMed  Article  Google Scholar 

17.

Sun, K. et al. Surface-assisted alkane polymerization: investigation on structure–reactivity relationship. J. Am. Chem. Soc. 140, 4820–4825 (2018).

CAS  PubMed  Article  Google Scholar 

18.

Zhang, X. et al. Coordination-controlled C–C coupling products via ortho-site C–H activation. ACS Nano 13, 1385–1393 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

19.

Rogers, C. et al. Closing the nanographene gap: Surface‐assisted synthesis of peripentacene from 6,6′‐bipentacene precursors. Angew. Chem. Int. Ed. 54, 15143–15146 (2015).

CAS  Article  Google Scholar 

20.

Gao, H.-Y. et al. Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. 52, 4024–4028 (2013).

CAS  Article  Google Scholar 

21.

Sun, Q., Zhang, C., Kong, H., Tan, Q. & Xu, W. On-surface aryl–aryl coupling via selective C–H activation. Chem. Commun. 50, 11825–11828 (2014).

CAS  Article  Google Scholar 

22.

Wiengarten, A. et al. Surface-assisted dehydrogenative homocoupling of porphine molecules. J. Am. Chem. Soc. 136, 9346–9354 (2014).

CAS  PubMed  Article  Google Scholar 

23.

Sun, Q. et al. On-surface formation of two-dimensional polymer via direct C–H activation of metal phthalocyanine. Chem. Commun. 51, 2836–2839 (2015).

CAS  Article  Google Scholar 

24.

Basagni, A. et al. Stereoselective photopolymerization of tetraphenylporphyrin derivatives on Ag(110) at the sub-monolayer level. Chem. Eur. J. 20, 14296–14304 (2014).

CAS  PubMed  Article  Google Scholar 

25.

Matena, M. et al. On-surface synthesis of a two-dimensional porous coordination network: Unraveling adsorbate interactions. Phys. Rev. B 90, 125408 (2014).

Article  CAS  Google Scholar 

26.

del Árbol, N. R. et al. On-surface bottom-up synthesis of azine derivatives displaying strong acceptor behavior. Angew. Chem. Int. Ed. 57, 8582–8586 (2018).

Article  CAS  Google Scholar 

27.

Held, P. A. et al. On-surface domino reactions: Glaser coupling and dehydrogenative coupling of a biscarboxylic acid to form polymeric bisacylperoxides. Angew. Chem. Int. Ed. 55, 9777–9782 (2016).

CAS  Article  Google Scholar 

28.

Gao, H. et al. Intermolecular on-surface σ-bond metathesis. J. Am. Chem. Soc. 139, 7012–7019 (2017).

CAS  PubMed  Article  Google Scholar 

29.

Kawai, S. et al. Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111). ACS Nano 12, 8791–8797 (2018).

CAS  PubMed  Article  Google Scholar 

30.

Zhang, L. et al. On-surface activation of trimethylsilyl-terminated alkynes on coinage metal surfaces. ChemPhysChem 20, 2382–2393 (2019).

CAS  PubMed  Article  Google Scholar 

31.

Ekström, U., Ottosson, H. O. & Norman, P. Characterization of the chemisorption of methylsilane on a Au(111) surface from the silicon K- and L-edge spectra: a theoretical study using the four-component static exchange approximation. J. Phys. Chem. C 111, 13846–13850 (2007).

Article  CAS  Google Scholar 

32.

Diller, K. et al. Polyphenylsilole multilayers - an insight from X-ray electron spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 31117–31124 (2015).

CAS  PubMed  Article  Google Scholar 

33.

Parrill, T. M. & Chung, Y. W. Surface analysis of cubic silicon carbide (001). Surf. Sci. 243, 96–112 (1991).

CAS  Article  Google Scholar 

34.

Hijikata, Y., Yaguchi, H., Yoshikawa, M. & Yoshida, S. Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films. Appl. Surf. Sci 184, 161–166 (2001).

CAS  Article  Google Scholar 

35.

Lee, S., Makan, S., Banaszak Holl, M. M. & McFeely, F. R. Synthetic control of solid/solid interfaces: Analysis of three new silicon/silicon oxide interfaces by soft X-ray photoemission. J. Am. Chem. Soc. 116, 11819–11826 (1994).

CAS  Article  Google Scholar 

36.

Mesarwi, A. & Ignatiev, A. X-ray photoemission study of Y-promoted oxidation of the Si(100) surface. Surf. Sci. 244, 15–21 (1991).

CAS  Article  Google Scholar 

37.

Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. 56–57 (Physical Electronics Division, Perkin-Elmer Corporation, 1992).

38.

Lin, G.-R. et al. Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide. J. Electrochem. Soc. 159, K35–K41 (2012).

CAS  Article  Google Scholar 

39.

Tsai, H. S., Hsiao, C. H., Chen, C. W., Ouyang, H. & Liang, J. H. Synthesis of nonepitaxial multilayer silicene assisted by ion implantation. Nanoscale 8, 9488–9492 (2016).

CAS  PubMed  Article  Google Scholar 

40.

Mönig, H. et al. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nat. Nanotechnol. 13, 371–375 (2018).

PubMed  Article  CAS  Google Scholar 

41.

Mönig, H. Copper-oxide tip functionalization for submolecular atomic force microscopy. Chem. Commun. 54, 9874–9888 (2018).

Article  Google Scholar 

42.

Sekiguchi, A., Kinjo, R. & Ichinohe, M. A stable compound containing a silicon-silicon triple bond. Science 305, 1755–1757 (2004).

CAS  PubMed  Article  Google Scholar 

43.

Yesilpinar, D. et al. High resolution noncontact atomic force microscopy imaging with oxygen-terminated copper tips at 78 K. Nanoscale 12, 2961–2965 (2020).

CAS  PubMed  Article  Google Scholar 

44.

Liu, L. et al. α-Diazo ketones in on-surface chemistry. J. Am. Chem. Soc. 140, 6000–6005 (2018).

CAS  PubMed  Article  Google Scholar 

45.

Campbell, C. T. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 7, 2770 (2017).

CAS  Article  Google Scholar 

46.

Hammond, G. S. A correlation of reaction rates. J. Am. Chem. Soc. 77, 334–338 (1955).

CAS  Article  Google Scholar 

47.

Nilson, A., Pettersson, L. G. M. & Nørskov, J. K. Chemical Bonding at Surfaces and Interfaces 1st edn, Ch. 3 (Elsevier, 2008).

48.

Cao, K., Füchsel, G., Kleyn, A. W. & Juurlink, L. B. F. Hydrogen adsorption and desorption from Cu(111) and Cu(211). Phys. Chem. Chem. Phys. 20, 22477–22488 (2018).

CAS  PubMed  Article  Google Scholar 

49.

Anger, G., Winkler, A. & Rendulic, K. D. Adsorption and desorption kinetics in the systems H2/Cu(111), H2/Cu(110) and H2/Cu(100). Surf. Sci. 220, 1–17 (1989).

CAS  Article  Google Scholar 

50.

Zhao, M. & Anderson, A. B. Theory of hydrogen deposition and evolution on Cu(111) electrodes. J. Electrochem. Soc. 164, H691–H695 (2017).

CAS  Article  Google Scholar 

51.

Björk, J. in On-surface Synthesis II (eds de Oteyza, D. G. & Rogero, C.) 19–34 (Springer, 2018).

52.

Svane, K. L. & Hammer, B. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces. J. Chem. Phys. 141, 174705 (2014).

CAS  PubMed  Article  Google Scholar 

53.

Matsuo, T. & Hayakawa, N. π-Electron systems containing Si=Si double bonds. Sci. Technol. Adv. Mat. 19, 108–129 (2018).

CAS  Article  Google Scholar 

54.

Sasamori, T., Yuasa, A., Hosoi, Y., Furukawa, Y. & Tokitoh, N. 1,2-Bis(ferrocenyl)disilene: a multistep redox system with an Si=Si double bond. Organometallics 27, 3325–3327 (2008).

CAS  Article  Google Scholar 

55.

Kobayashi, M. et al. Air-stable, room-temperature emissive disilenes with π-extended aromatic groups. J. Am. Chem. Soc. 132, 15162–15163 (2010).

CAS  PubMed  Article  Google Scholar 

56.

Li, L. et al. Coplanar oligo(p-phenylenedisilenylene)s as Si=Si analogues of oligo(p-phenylenevinylene)s: evidence for extended π-conjugation through the carbon and silicon π-frameworks. J. Am. Chem. Soc. 137, 15026–15035 (2015).

CAS  PubMed  Article  Google Scholar 

57.

Bejan, I. & Scheschkewitz, D. Two Si–Si double bonds connected by a phenylene bridge. Angew. Chem. Int. Ed. 46, 5784–5786 (2007).

Google Scholar 

58.

Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. J. Am. Chem. Soc. 129, 14164–14165 (2007).

CAS  PubMed  Article  Google Scholar 

59.

Tamao, K., Kobayashi, M., Matsuo, T., Furukawa, S. & Tsuji, H. The first observation of electroluminescence from di(2-naphthyl)disilene, an Si=Si double bond-containing π-conjugated compound. Chem. Commun. 48, 1030–1032 (2012).

CAS  Article  Google Scholar 

60.

Obeid, N. M. et al. (Oligo)aromatic species with one or two conjugated Si=Si bonds: near-IR emission of anthracenyl-bridged tetrasiladiene. Dalton Trans. 46, 8839–8848 (2017).

CAS  PubMed  Article  Google Scholar 

61.

Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

CAS  PubMed  Article  Google Scholar 

62.

Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–256 (2000).

CAS  Article  Google Scholar 

63.

Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169