Metallically gradated silicon nanowire and palladium nanoparticle composites as robust hydrogenation catalysts

Metallically gradated silicon nanowire and palladium nanoparticle composites as robust hydrogenation catalysts
1.

Bonrath, W., Medlock, J., Schutz, J., Wustenberg, B. & Netscher, T. in Hydrogenation (ed Karam, I.) (InTech, Rijeka, Croatia, 2012).


2.

Rylander, P. N. Hydrogenation and Dehydrogenation, Ulmanns’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2005).

3.

Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (Wiley, New York, 2001).

4.

Rylander, P. N. Hydrogenation Methods (Academic Pres, New York, 1985).

5.

Liu, H., Jiang, T., Han, B., Liang, S. & Zhou, Y. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-lewis acid catalyst. Science 326, 1250–1252 (2009).


CAS  PubMed  Google Scholar 

6.

Mastalir, Á., Király, Z. & Berger, F. Comparative study of size-quantized Pd-montmorillonite catalysts in liquid-phase semihydrogenations of alkynes. Appl. Catal. A 269, 161–168 (2004).


CAS  Google Scholar 

7.

Papp, A., Molnár, Á. & Mastalir, Á. Catalytic investigation of Pd particles supported on MCM-41 for the selective hydrogenations of terminal and internal alkynes. Appl. Catal. A 289, 256–266 (2005).


CAS  Google Scholar 

8.

Webb, J. D., MacQuarrie, S., McEleney, K. & Crudden, C. M. Mesoporous silica-supported Pd catalysts: an investigation into structure, activity, leaching and heterogeneity. J. Catal. 252, 97–109 (2007).


CAS  Google Scholar 

9.

Piccolo, L. et al. Tuning the shape of nanoparticles to control their catalytic properties: selective hydrogenation of 1,3-butadiene on Pd/Al2O3. Phys. Chem. Chem. Phys. 10, 5504–5506 (2008).


CAS  PubMed  Google Scholar 

10.

Domínguez-Domínguez, S., Berenguer-Murcia, Á., Linares-Solano, Á. & Cazorla-Amorós, D. Inorganic materials as supports for palladium nanoparticles: application in the semi-hydrogenation of phenylacetylene. J. Catal. 257, 87–95 (2008).


Google Scholar 

11.

Cai, G. et al. Synthesis of a highly stable Pd@CeO2 catalyst for methane combustion with the synergistic effect of urea and citric acid. ACS Omega 3, 16769–16776 (2018).


CAS  PubMed  PubMed Central  Google Scholar 

12.

Senftle, T. P., van Duin, A. C. T. & Janik, M. J. Role of site stability in methane activation on PdxCe1-xOδ surfaces. ACS Catal. 5, 6187–6199 (2015).


CAS  Google Scholar 

13.

Liu, X. et al. Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chem. Eur. J. 23, 11834–11842 (2017).


CAS  PubMed  Google Scholar 

14.

Augustine, R. L. Catalytic Hydrogenation (Marcel Dekker, New York, 1965).

15.

Thomas, J. M., Johnson, B. F. G., Raja, R., Sankar, G. & Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 36, 20–30 (2003).


CAS  PubMed  Google Scholar 

16.

Das, D. D. & Sayari, A. Applications of pore-expanded mesoporous silica 6. novel synthesis of monodispersed supported palladium nanoparticles and their activity for Suzuki reaction. J. Catal. 246, 60–65 (2007).


CAS  Google Scholar 

17.

Ren, N., Yang, Y.-H., Zhang, Y.-H., Wang, Q.-R. & Tang, Y. Heck coupling in zeolite microcapsular reactor: a test for encaged quasi-homogeneous catalysis. J. Catal. 246, 215–222 (2007).


CAS  Google Scholar 

18.

Karakanov, E. A., Zolotukhina, A. V., Ivanov, A. O. & Maximov, A. L. Dendrimer-encapsulated Pd nanoparticles, immobilized in silica pores, as catalysts for selective hydrogenation of unsaturated compounds. Chem. Open 8, 358–381 (2019).


CAS  Google Scholar 

19.

Chen, Z. et al. Pd nanoparticles confined in the porous graphene-like carbon nanosheets for olefin hydrogenation. Langmuir 34, 12809–12814 (2018).


CAS  PubMed  Google Scholar 

20.

Budroni, G., Corma., Garcia, H. & Primo, A. Pd nanoparticles embedded in sponge-like porous silica as a Suzuki-Miyaura catalyst: similarities and differences with homogeneous catalysts. J. Catal. 251, 345–353 (2007).


CAS  Google Scholar 

21.

Polshettiwar, V. & Molnár, Á. Silica-supported Pd catalysts for Heck coupling reactions. Tetrahedron 63, 6949–6976 (2007).


CAS  Google Scholar 

22.

Wisher, A. C., Bronstein, I. & Chechik, V. Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents. Chem. Commun. 15, 1637–1639 (2006).


Google Scholar 

23.

Niu, Y., Yeung, L. K. & Crooks, R. M. Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J. Am. Chem. Soc. 123, 6840–6846 (2001).


CAS  Google Scholar 

24.

Gopidas, K. R., Whitesell, J. K. & Fox, M. A. Synthesis, characterization, and catalytic application of a palladium-nanoparticle-cored dendrimer. Nano Lett. 3, 1757–1760 (2003).


CAS  Google Scholar 

25.

Tang, Z. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 136, 1738–1741 (2014).


PubMed  Google Scholar 

26.

Yamada, Y. M. A. Development of batch and flow immobilized catalytic systems with high catalytic activity and reusability. Chem. Pharm. Bull. 65, 805–821 (2017).


CAS  PubMed  Google Scholar 

27.

Hu, H. et al. Self-assembled polymeric pyridine copper catalysts for Huisgen cycloaddition with alkynes and acetylene gas: application in synthesis of tazobactam. Org. Proc. Res. Dev. 23, 493–498 (2019).


CAS  Google Scholar 

28.

Hudson, R. et al. Poly(meta-phenylene oxides) for the design of a tunable, efficient, and reusable catalytic platform. Chem. Commun. 54, 2878–2881 (2018).


CAS  Google Scholar 

29.

Yamada, Y. M. A., Sarkar, S. M. & Uozumi, Y. Amphiphilic self-assembled polymeric copper catalyst to parts per million levels: click chemistry. J. Am. Chem. Soc. 134, 9285–9290 (2012).


CAS  PubMed  Google Scholar 

30.

Yamada, Y. M. A., Sarkar, S. M. & Uozumi, Y. Self-assembled poly(imidazole-palladium): highly active, reusable catalyst at parts per million to parts per billion levels. J. Am. Chem. Soc. 134, 3190–3198 (2012).


CAS  PubMed  Google Scholar 

31.

Sarkar, S. M., Uozumi, Y. & Yamada, Y. M. A. A highly active and reusable self-assembled poly(imidazole/palladium) catalyst: allylic arylation/alkenylation. Angew. Chem. Int. Ed. 50, 9437–9441 (2011).


CAS  Google Scholar 

32.

Chng, L. L., Erathodiyil, N. & Ying, J. Y. Nanostructure catalysts for organic transformations. Acc. Chem. Res. 46, 1825–1837 (2013).


CAS  PubMed  Google Scholar 

33.

Yamada, Y. M. A. et al. A palladium-nanoparticle and silicon-nanowire-array hybrid: a platform for catalytic heterogeneous reactions. Angew. Chem. Int. Ed. 53, 127–131 (2014).


CAS  Google Scholar 

34.

Baek, H. et al. Production of bio hydrofined diesel, jet fuel, and carbon monoxide from fatty acids using a silicon nanowire array-supported rhodium nanoparticle catalyst under microwave conditions. ACS Catal. 10, 2148–2156 (2020). For Rh nanoparticles on SiNA, see.


CAS  Google Scholar 

35.

Casiello, M. et al. Catalytic activity of silicon nanowires decorated with gold and copper nanoparticles deposited by pulsed lase ablation. Nanomaterials 8, 78–95 (2018).


PubMed Central  Google Scholar 

36.

Sun, X.–H. et al. Reductive self-assembling of Pd and Rh nanoparticles on silicon nanowire templates. Chem. Mater. 16, 1143–1152 (2004).


CAS  Google Scholar 

37.

Schmidt, V., Wittemann, J. V. & Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 110, 361–388 (2010).


CAS  PubMed  Google Scholar 

38.

Niwano, M., Miura, T., Kimura, Y., Tajima, R. & Miyamoto, N. Real-time, in situ infrared study of etching of Si (100) and (111) surfaces in dilute hydrofluoric acid solution. J. Appl. Phys. 79, 3708–3713 (1996).


CAS  Google Scholar 

39.

Niwano, M., Takeda, Y., Ishibashi, Y., Kurita, K. & Miyamoto, N. Morphology of hydrofluoric acid and ammonium fluoride-treated silicon surfaces studied by surface infrared spectroscopy. J. Appl. Phys. 71, 5646–5649 (1992).


CAS  Google Scholar 

40.

Trucks, G. W., Raghavachari, K., Higashi, G. S. & Chabal, Y. J. Mechanism of HF etching of silicon surfaces: a theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 65, 504–507 (1990).


CAS  PubMed  Google Scholar 

41.

Zhang, M.-L. et al. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C. 112, 4444–4450 (2008).


CAS  Google Scholar 

42.

Yang, S. et al. Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic systems. Angew. Chem. Int. Ed. 54, 2661–2664 (2015).


CAS  Google Scholar 

43.

Wei, F. et al. In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis. Sci. China Chem. 60, 1236–1242 (2017).


CAS  Google Scholar 

44.

Besson, M., Gallezot, P. & Pinel, C. Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014).


CAS  PubMed  Google Scholar 

45.

Pews-Davtyan, A. et al. Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green. Chem. 21, 5104–5112 (2019).


CAS  Google Scholar 

46.

McArdle, S., Girish, S., Leahy, J. J. & Curtin, T. Selective hydrogenation of sunflower oil over noble metal catalysts. J. Mol. Catal. A: Chem. 351, 179–187 (2011).


CAS  Google Scholar 

47.

Mäki-Arvela, P. atalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Appl. Catal., A: Gen. 345, 201–212 (2008).


Google Scholar 

48.

Roach, C. et al. Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry 43, 6344–6351 (2004).


CAS  PubMed  Google Scholar 

49.

Emken, E. A. Nutrition and biochemistry of trans and positional fatty acid isomers in hydrogenated oil. Rev. Nutr. 4, 339–376 (1984).


CAS  Google Scholar 

50.

Mozaffarian, D. et al. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 354, 1601–1613 (2006).


CAS  PubMed  Google Scholar 

51.

Hofmann, S. Compositional depth profiling by sputtering. Prog. Surf. Sci. 36, 35–87 (1991).


CAS  Google Scholar 

52.

Chen, L.-Y., Hunter, G. W., Neudeck, P. G. & Knight, D. X-ray photoelectron spectroscopy study of the heating effects on Pd/6H-SiC Schottky structure. J. Vac. Sci. Technol., A 16, 2890–2895 (1998).


CAS  Google Scholar 

53.

Lidiya, L. S., Stadnichenko, A. I., Koscheev, S. V., Zaikovskii, V. I. & Boronin, A. I. Highly oxidized palladium nanoparticles comprising Pd4+ Species: spectroscopic and structural aspects, thermal stability, and reactivity J. Phys. Chem. C 116, 19342–19348 (2012).

54.

Shaplugin, I. S., Aparnikov, G. L. & Lazarev, V. B. Preparation of palladium dioxide at high pressure. Zh. Neorg. Khim. 23, 884–887 (1978).


Google Scholar 

55.

Kibis, L. S., Titkov, A. I., Stadnichenko, A. I., Koscheev, S. V. & Boronin, A. I. X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl. Surf. Sci. 255, 9248–9254 (2009).


CAS  Google Scholar 

56.

Grunthaner, P. J., Grunthaner, F. J., Madhukar, A. & Mayer, J. W. metal/silicon interface formation: the Ni/Si and Pd/Si systems. J. Vac. Sci. Technol. 19, 649–656 (1981).


CAS  Google Scholar 

57.

Atzrodt, V., Wirth, T. H. & Lange, H. Investigation of NiSi and Pd3Si thin films by AES and XPS. Phys. Status Solidi (a) 62, 531–537 (1980).


CAS  Google Scholar 

58.

Wagner, C. D. & Taylor, J. A. Generation of XPS auger lines by bremsstrahlung. J. Electron Spectrosc. Relat. Phenom. 20, 83–93 (1980).


CAS  Google Scholar 

59.

Chen, J. G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf. Sci. Rep. 30, 1–152 (1997).


CAS  Google Scholar 

60.

Mason, M. G. Electronic structure of supported small metal clusters. Phys. Rev. B 27, 748–762 (1983).


CAS  Google Scholar 

61.

Kubota, T., Kitajima, Y., Asakura, K. & Iwasawa, Y. Pd L3-edge XANES spectra of supported Pd particles induced by the adsorption and the absorption of hydrogen. Bull. Chem. Soc. Jpn. 72, 673–681 (1999).


CAS  Google Scholar