Dimensional stability of short fibre reinforced flowable dental composites

Dimensional stability of short fibre reinforced flowable dental composites
1.

Shouha, P., Swain, M. & Ellakwa, A. The effect of fiber aspect ratio and volume loading on the flexural properties of flowable dental composite. Dent. Mater. 30, 1234–1244 (2014).

CAS  PubMed  Article  Google Scholar 

2.

Lassila, L., Keulemans, F., Sailynoja, E., Vallittu, P. K. & Garoushi, S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent. Mater. 34, 598–606 (2018).

CAS  PubMed  Article  Google Scholar 

3.

Mirică, I.-C. et al. Influence of filler loading on the mechanical properties of flowable resin composites. Material. 13, 12 (2020).

Article  CAS  Google Scholar 

4.

Ferracane, J. L. Resin composite–state of the art. Dent. Mater. 27, 29–38 (2011).

CAS  PubMed  Article  Google Scholar 

5.

Vallittu, P. K. A review of fiber-reinforced denture base resins. J. Prosthodont. 5, 270–276 (1996).

CAS  PubMed  Article  Google Scholar 

6.

Vallittu, P. K. Fibre-reinforced composites (FRCs) as dental materials. in Non-Metallic Biomaterials for Tooth Repair and Replacement 352–374 (2013). https://doi.org/10.1533/9780857096432.3.352.

7.

Khan, A. S., Azam, M. T., Khan, M., Mian, S. A. & Ur Rehman, I. An update on glass fiber dental restorative composites: a systematic review. Mater. Sci. Eng. C 7, 26–39 (2015).

Article  CAS  Google Scholar 

8.

Furtos, G., Tomoaia-Cotisel, M., Baldea, B. & Prejmerean, C. Development and characterization of new AR glass fiber-reinforced cements with potential medical applications. J. Appl. Polym. Sci. 128, 1266–1273 (2013).

CAS  Article  Google Scholar 

9.

Behl, S. et al. Physical and mechanical characterisation of flowable dental composites reinforced with short aspect ratio micro-sized S-Glass fibres. Mater. Sci. Eng. C 111, 110771. https://doi.org/10.1016/j.msec.2020.110771 (2020).

CAS  Article  Google Scholar 

10.

Garoushi, S., Vallittu, P. K. & Lassila, L. V. Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent. Mater. 23, 1356–1362 (2007).

CAS  PubMed  Article  Google Scholar 

11.

Watts, D. C., Kisumbi, B. K. & Toworfe, G. K. Dimensional changes of resin/ionomer restoratives in aqueous and neutral media. Dent. Mater. 16, 89–96 (2000).

CAS  PubMed  Article  Google Scholar 

12.

Leprince, J. G., Palin, W. M., Hadis, M. A., Devaux, J. & Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 29, 139–156 (2013).

CAS  PubMed  Article  Google Scholar 

13.

Li, F., Qu, C.-B., Hua, Y., Xiao, H.-M. & Fu, S.-Y. Largely improved dimensional stability of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating at a low content. Carbon N. Y. 119, 339–349 (2017).

CAS  Article  Google Scholar 

14.

Illing, T., Schoßig, M., Bierögel, C. & Grellmann, W. Influence of hygrothermal aging on dimensional stability of thin injection-molded short glass fiber reinforced PA6 materials. J. Appl. Polym. Sci. 132, 1 (2015).

Article  CAS  Google Scholar 

15.

Marghalani, H. Y. Resin-based dental composite materials BT. In Handbook of Bioceramics and Biocomposites (ed. Antoniac, I. V.) 1–38 (Springer, New York, 2014).

Google Scholar 

16.

Ferracane, J. L. et al. Academy of dental materials guidance-resin composites: Part II-technique sensitivity (handling, polymerization, dimensional changes). Dent. Mater. 33, 1171–1191 (2017).

CAS  PubMed  Article  Google Scholar 

17.

Ferracane, J. L. Placing dental composites: A stressful experience. Oper. Dent. 33, 247–257 (2008).

PubMed  Article  Google Scholar 

18.

Braga, R. R., Ballester, R. Y. & Ferracane, J. L. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 21, 962–970 (2005).

CAS  PubMed  Article  Google Scholar 

19.

Zach, L. & Cohen, G. Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 19, 515–530 (1965).

CAS  PubMed  Article  Google Scholar 

20.

Soderholm, K. J., Zigan, M., Ragan, M., Fischlschweiger, W. & Bergman, M. Hydrolytic degradation of dental composites. J. Dent. Res. 63, 1248–1254 (1984).

CAS  PubMed  Article  Google Scholar 

21.

Lassila, L. V., Nohrstrom, T. & Vallittu, P. K. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 23, 2221–2229 (2002).

CAS  PubMed  Article  Google Scholar 

22.

International-Standards-Organisation. ISO 4049:2009(E) Densitry Polymer-based restorative materials. 37 (2009).

23.

Miettinen, V. M., Narva, K. K. & Vallittu, P. K. Water sorption, solubility and effect of post-curing of glass fibre reinforced polymers. Biomaterials 20, 1187–1194 (1999).

CAS  PubMed  Article  Google Scholar 

24.

Närhi, T. O., Ballo, A. M. & Vallittu, P. K. Composite-based oral implants. in Non-Metallic Biomaterials for Tooth Repair and Replacement 336–351 (Elsevier Inc., 2013). https://doi.org/10.1533/9780857096432.3.336.

25.

Miettinen, V. M., Vallittu, P. K. & Docent, D. T. Water sorption and solubility of glass fiber-reinforced denture polymethyl methacrylate resin. J. Prosthet. Dent. 77, 531–534 (1997).

CAS  PubMed  Article  Google Scholar 

26.

Sideridou, I., Achilias, D. S. & Kyrikou, E. Thermal expansion characteristics of light-cured dental resins and resin composites. Biomaterials 25, 3087–3097 (2004).

CAS  PubMed  Article  Google Scholar 

27.

Tezvergil, A., Lassila, L. V. & Vallittu, P. K. The effect of fiber orientation on the polymerization shrinkage strain of fiber-reinforced composites. Dent. Mater. 22, 610–616 (2006).

CAS  PubMed  Article  Google Scholar 

28.

Hengchang, X., Wenyi, L. & Tong, W. Measurement of thermal expansion coefficient of human teeth. Aust. Dent. J. 34, 530–535 (1989).

Article  Google Scholar 

29.

Hashinger, D. T. & Fairhurst, C. W. Thermal expansion and filler content of composite resins. J. Prosthet. Dent. 52, 506–510 (1984).

CAS  PubMed  Article  Google Scholar 

30.

Vallittu, P. K. An overview of development and status of fiber-reinforced composites as dental and medical biomaterials. Acta Biomater. Odontol. Scand. 4, 44–55 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

31.

Garoushi, S., Sailynoja, E., Vallittu, P. K. & Lassila, L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent. Mater. 29, 835–841 (2013).

CAS  PubMed  Article  Google Scholar 

32.

Rajan, G. et al. Evaluation of the physical properties of dental resin composites using optical fiber sensing technology. Dent. Mater. 32, 1113–1123 (2016).

CAS  PubMed  Article  Google Scholar 

33.

Shouha, P. S. R. & Ellakwa, A. E. Effect of short glass fibers on the polymerization shrinkage stress of dental composite. J. Biomed. Mater. Res. B 105, 1930–1937 (2017).

CAS  Article  Google Scholar 

34.

Cho, K. et al. Selective atomic-level etching on short S-glass fibres to control interfacial properties for restorative dental composites. Sci. Rep. 9, 3851 (2019).

ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

35.

International-Standards-Organisation. ISO 10477:2018 Densitry Polymer-based crown and veneering materials. 27 (2018).

36.

International-Standards-Organisation. ISO 17304:2013 Densitry: Polymerization shrinkage: Method for determination of polymerization shrinkage of polymer-based restorative materials. 12 (2009).

37.

Wang, Z., Landis, F. A., Giuseppetti, A. A. M., Lin-Gibson, S. & Chiang, M. Y. M. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents. Dent. Mater. 30, 1316–1324 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

38.

Wang, Z. & Chiang, M. Y. Correlation between polymerization shrinkage stress and C-factor depends upon cavity compliance. Dent. Mater. 32, 343–352 (2016).

PubMed  Article  CAS  Google Scholar 

39.

ASTM. ASTM Standard E228−17: Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer. ASTM Standard E228−17: Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer (2017). https://doi.org/10.1520/E0228-17.

40.

Bocalon, A. C., Mita, D., Natale, L. C., Pfeifer, C. S. & Braga, R. R. Polymerization stress of experimental composites containing random short glass fibers. Dent. Mater. 32, 1079–1084 (2016).

CAS  PubMed  Article  Google Scholar 

41.

Tsujimoto, A. et al. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. Eur. J. Oral Sci. 124, 480–489 (2016).

CAS  PubMed  Article  Google Scholar 

42.

Cho, K. et al. Influence of surface treatment on the interfacial and mechanical properties of short S-glass fiber-reinforced dental composites. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.9b01857 (2019).

Article  PubMed  PubMed Central  Google Scholar 

43.

Flury, S., Hayoz, S., Peutzfeldt, A., Husler, J. & Lussi, A. Depth of cure of resin composites: Is the ISO 4049 method suitable for bulk fill materials?. Dent. Mater. 28, 521–528 (2012).

CAS  PubMed  Article  Google Scholar 

44.

Kleverlaan, C. J. & Feilzer, A. J. Polymerization shrinkage and contraction stress of dental resin composites. Dent. Mater. 21, 1150–1157 (2005).

CAS  PubMed  Article  Google Scholar 

45.

Bocalon, A. C. et al. Replacement of glass particles by multidirectional short glass fibers in experimental composites: Effects on degree of conversion, mechanical properties and polymerization shrinkage. Dent. Mater. 32, e204–e210 (2016).

CAS  PubMed  Article  Google Scholar 

46.

Garoushi, S., Gargoum, A., Vallittu, P. K. & Lassila, L. Short fiber-reinforced composite restorations: A review of the current literature. J. Investig. Clin. Dent. 9, e12330. https://doi.org/10.1111/jicd.12330 (2018).

Article  PubMed  Google Scholar 

47.

Labella, R., Lambrechts, P., Van Meerbeek, B. & Vanherle, G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 15, 128–137 (1999).

CAS  PubMed  Article  Google Scholar 

48.

Boaro, L. C. et al. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent. Mater. 26, 1144–1150 (2010).

CAS  PubMed  Article  Google Scholar 

49.

Gonçalves, F., Kawano, Y. & Braga, R. R. Contraction stress related to composite inorganic content. Dent. Mater. 26, 704–709 (2010).

PubMed  Article  CAS  Google Scholar 

50.

Par, M., Mohn, D., Attin, T., Tarle, Z. & Tauböck, T. T. Polymerization shrinkage behaviour of resin composites functionalized with unsilanized bioactive glass fillers. Sci. Rep. 10, 15237 (2020).

ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

51.

Lovell, L. G., Berchtold, K. A., Elliott, J. E., Lu, H. & Bowman, C. N. Understanding the kinetics and network formation of dimethacrylate dental resins. Polym. Adv. Technol. 12, 335–345 (2001).

CAS  Article  Google Scholar 

52.

Al-Qudah, A. A., Mitchell, C. A., Biagioni, P. A. & Hussey, D. L. Thermographic investigation of contemporary resin-containing dental materials. J. Dent. 33, 593–602 (2005).

CAS  PubMed  Article  Google Scholar 

53.

Ilday, N. O., Sagsoz, O., Karatas, O., Bayindir, Y. Z. & Çelik, N. Temperature changes caused by light curing of fiber-reinforced composite resins. J. Conserv. Dent. 18, 223–226 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

54.

Atai, M. & Motevasselian, F. Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites. Clin. Oral. Investig. 13, 309–316 (2009).

PubMed  Article  Google Scholar 

55.

Brostow, W., Goodman, S. H. & Wahrmund, J. Epoxies. in (eds. Dodiuk, H. & Goodman, S. H. B. T.-H. of T. P. 191–252 (William Andrew Publishing, 2014). https://doi.org/10.1016/B978-1-4557-3107-7.00008-7.

56.

Abu-elenain, D. A., Lewis, S. H. & Stansbury, J. W. Property evolution during vitrification of dimethacrylate photopolymer networks. Dent. Mater. 29, 1173–1181 (2013).

CAS  PubMed  Article  Google Scholar 

57.

Gajewski, V. E. S., Pfeifer, C. S., Fróes-Salgado, N. R. G., Boaro, L. C. C. & Braga, R. R. Monomers used in resin composites: Degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 23, 508–514 (2012).

PubMed  Article  Google Scholar 

58.

Guo, Y. et al. Polymerization stress evolution of a bulk-fill flowable composite under different compliances. Dent. Mater. 32, 578–586 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

59.

Watts, D. C. & Alnazzawi, A. Temperature-dependent polymerization shrinkage stress kinetics of resin-composites. Dent. Mater. 30, 654–660 (2014).

CAS  PubMed  <